3.17 \(\int \frac {(d+c d x)^2 (a+b \tanh ^{-1}(c x))}{x^4} \, dx\)

Optimal. Leaf size=81 \[ -\frac {d^2 (c x+1)^3 \left (a+b \tanh ^{-1}(c x)\right )}{3 x^3}+\frac {4}{3} b c^3 d^2 \log (x)-\frac {4}{3} b c^3 d^2 \log (1-c x)-\frac {b c^2 d^2}{x}-\frac {b c d^2}{6 x^2} \]

[Out]

-1/6*b*c*d^2/x^2-b*c^2*d^2/x-1/3*d^2*(c*x+1)^3*(a+b*arctanh(c*x))/x^3+4/3*b*c^3*d^2*ln(x)-4/3*b*c^3*d^2*ln(-c*
x+1)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {37, 5936, 12, 88} \[ -\frac {d^2 (c x+1)^3 \left (a+b \tanh ^{-1}(c x)\right )}{3 x^3}-\frac {b c^2 d^2}{x}+\frac {4}{3} b c^3 d^2 \log (x)-\frac {4}{3} b c^3 d^2 \log (1-c x)-\frac {b c d^2}{6 x^2} \]

Antiderivative was successfully verified.

[In]

Int[((d + c*d*x)^2*(a + b*ArcTanh[c*x]))/x^4,x]

[Out]

-(b*c*d^2)/(6*x^2) - (b*c^2*d^2)/x - (d^2*(1 + c*x)^3*(a + b*ArcTanh[c*x]))/(3*x^3) + (4*b*c^3*d^2*Log[x])/3 -
 (4*b*c^3*d^2*Log[1 - c*x])/3

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 5936

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_))^(q_.), x_Symbol] :> With[{u =
IntHide[(f*x)^m*(d + e*x)^q, x]}, Dist[a + b*ArcTanh[c*x], u, x] - Dist[b*c, Int[SimplifyIntegrand[u/(1 - c^2*
x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && NeQ[q, -1] && IntegerQ[2*m] && ((IGtQ[m, 0] && IGtQ[q,
 0]) || (ILtQ[m + q + 1, 0] && LtQ[m*q, 0]))

Rubi steps

\begin {align*} \int \frac {(d+c d x)^2 \left (a+b \tanh ^{-1}(c x)\right )}{x^4} \, dx &=-\frac {d^2 (1+c x)^3 \left (a+b \tanh ^{-1}(c x)\right )}{3 x^3}-(b c) \int \frac {(d+c d x)^2}{3 x^3 (-1+c x)} \, dx\\ &=-\frac {d^2 (1+c x)^3 \left (a+b \tanh ^{-1}(c x)\right )}{3 x^3}-\frac {1}{3} (b c) \int \frac {(d+c d x)^2}{x^3 (-1+c x)} \, dx\\ &=-\frac {d^2 (1+c x)^3 \left (a+b \tanh ^{-1}(c x)\right )}{3 x^3}-\frac {1}{3} (b c) \int \left (-\frac {d^2}{x^3}-\frac {3 c d^2}{x^2}-\frac {4 c^2 d^2}{x}+\frac {4 c^3 d^2}{-1+c x}\right ) \, dx\\ &=-\frac {b c d^2}{6 x^2}-\frac {b c^2 d^2}{x}-\frac {d^2 (1+c x)^3 \left (a+b \tanh ^{-1}(c x)\right )}{3 x^3}+\frac {4}{3} b c^3 d^2 \log (x)-\frac {4}{3} b c^3 d^2 \log (1-c x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 103, normalized size = 1.27 \[ -\frac {d^2 \left (6 a c^2 x^2+6 a c x+2 a-8 b c^3 x^3 \log (x)+7 b c^3 x^3 \log (1-c x)+b c^3 x^3 \log (c x+1)+6 b c^2 x^2+2 b \left (3 c^2 x^2+3 c x+1\right ) \tanh ^{-1}(c x)+b c x\right )}{6 x^3} \]

Antiderivative was successfully verified.

[In]

Integrate[((d + c*d*x)^2*(a + b*ArcTanh[c*x]))/x^4,x]

[Out]

-1/6*(d^2*(2*a + 6*a*c*x + b*c*x + 6*a*c^2*x^2 + 6*b*c^2*x^2 + 2*b*(1 + 3*c*x + 3*c^2*x^2)*ArcTanh[c*x] - 8*b*
c^3*x^3*Log[x] + 7*b*c^3*x^3*Log[1 - c*x] + b*c^3*x^3*Log[1 + c*x]))/x^3

________________________________________________________________________________________

fricas [A]  time = 0.63, size = 128, normalized size = 1.58 \[ -\frac {b c^{3} d^{2} x^{3} \log \left (c x + 1\right ) + 7 \, b c^{3} d^{2} x^{3} \log \left (c x - 1\right ) - 8 \, b c^{3} d^{2} x^{3} \log \relax (x) + 6 \, {\left (a + b\right )} c^{2} d^{2} x^{2} + {\left (6 \, a + b\right )} c d^{2} x + 2 \, a d^{2} + {\left (3 \, b c^{2} d^{2} x^{2} + 3 \, b c d^{2} x + b d^{2}\right )} \log \left (-\frac {c x + 1}{c x - 1}\right )}{6 \, x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^2*(a+b*arctanh(c*x))/x^4,x, algorithm="fricas")

[Out]

-1/6*(b*c^3*d^2*x^3*log(c*x + 1) + 7*b*c^3*d^2*x^3*log(c*x - 1) - 8*b*c^3*d^2*x^3*log(x) + 6*(a + b)*c^2*d^2*x
^2 + (6*a + b)*c*d^2*x + 2*a*d^2 + (3*b*c^2*d^2*x^2 + 3*b*c*d^2*x + b*d^2)*log(-(c*x + 1)/(c*x - 1)))/x^3

________________________________________________________________________________________

giac [B]  time = 0.15, size = 330, normalized size = 4.07 \[ \frac {2}{3} \, {\left (2 \, b c^{2} d^{2} \log \left (-\frac {c x + 1}{c x - 1} - 1\right ) - 2 \, b c^{2} d^{2} \log \left (-\frac {c x + 1}{c x - 1}\right ) + \frac {2 \, {\left (\frac {3 \, {\left (c x + 1\right )}^{2} b c^{2} d^{2}}{{\left (c x - 1\right )}^{2}} + \frac {3 \, {\left (c x + 1\right )} b c^{2} d^{2}}{c x - 1} + b c^{2} d^{2}\right )} \log \left (-\frac {c x + 1}{c x - 1}\right )}{\frac {{\left (c x + 1\right )}^{3}}{{\left (c x - 1\right )}^{3}} + \frac {3 \, {\left (c x + 1\right )}^{2}}{{\left (c x - 1\right )}^{2}} + \frac {3 \, {\left (c x + 1\right )}}{c x - 1} + 1} + \frac {\frac {12 \, {\left (c x + 1\right )}^{2} a c^{2} d^{2}}{{\left (c x - 1\right )}^{2}} + \frac {12 \, {\left (c x + 1\right )} a c^{2} d^{2}}{c x - 1} + 4 \, a c^{2} d^{2} + \frac {4 \, {\left (c x + 1\right )}^{2} b c^{2} d^{2}}{{\left (c x - 1\right )}^{2}} + \frac {7 \, {\left (c x + 1\right )} b c^{2} d^{2}}{c x - 1} + 3 \, b c^{2} d^{2}}{\frac {{\left (c x + 1\right )}^{3}}{{\left (c x - 1\right )}^{3}} + \frac {3 \, {\left (c x + 1\right )}^{2}}{{\left (c x - 1\right )}^{2}} + \frac {3 \, {\left (c x + 1\right )}}{c x - 1} + 1}\right )} c \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^2*(a+b*arctanh(c*x))/x^4,x, algorithm="giac")

[Out]

2/3*(2*b*c^2*d^2*log(-(c*x + 1)/(c*x - 1) - 1) - 2*b*c^2*d^2*log(-(c*x + 1)/(c*x - 1)) + 2*(3*(c*x + 1)^2*b*c^
2*d^2/(c*x - 1)^2 + 3*(c*x + 1)*b*c^2*d^2/(c*x - 1) + b*c^2*d^2)*log(-(c*x + 1)/(c*x - 1))/((c*x + 1)^3/(c*x -
 1)^3 + 3*(c*x + 1)^2/(c*x - 1)^2 + 3*(c*x + 1)/(c*x - 1) + 1) + (12*(c*x + 1)^2*a*c^2*d^2/(c*x - 1)^2 + 12*(c
*x + 1)*a*c^2*d^2/(c*x - 1) + 4*a*c^2*d^2 + 4*(c*x + 1)^2*b*c^2*d^2/(c*x - 1)^2 + 7*(c*x + 1)*b*c^2*d^2/(c*x -
 1) + 3*b*c^2*d^2)/((c*x + 1)^3/(c*x - 1)^3 + 3*(c*x + 1)^2/(c*x - 1)^2 + 3*(c*x + 1)/(c*x - 1) + 1))*c

________________________________________________________________________________________

maple [A]  time = 0.04, size = 141, normalized size = 1.74 \[ -\frac {c^{2} d^{2} a}{x}-\frac {d^{2} a}{3 x^{3}}-\frac {c \,d^{2} a}{x^{2}}-\frac {c^{2} d^{2} b \arctanh \left (c x \right )}{x}-\frac {d^{2} b \arctanh \left (c x \right )}{3 x^{3}}-\frac {c \,d^{2} b \arctanh \left (c x \right )}{x^{2}}-\frac {b c \,d^{2}}{6 x^{2}}-\frac {b \,c^{2} d^{2}}{x}+\frac {4 c^{3} d^{2} b \ln \left (c x \right )}{3}-\frac {7 c^{3} d^{2} b \ln \left (c x -1\right )}{6}-\frac {c^{3} d^{2} b \ln \left (c x +1\right )}{6} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*x+d)^2*(a+b*arctanh(c*x))/x^4,x)

[Out]

-c^2*d^2*a/x-1/3*d^2*a/x^3-c*d^2*a/x^2-c^2*d^2*b*arctanh(c*x)/x-1/3*d^2*b*arctanh(c*x)/x^3-c*d^2*b*arctanh(c*x
)/x^2-1/6*b*c*d^2/x^2-b*c^2*d^2/x+4/3*c^3*d^2*b*ln(c*x)-7/6*c^3*d^2*b*ln(c*x-1)-1/6*c^3*d^2*b*ln(c*x+1)

________________________________________________________________________________________

maxima [B]  time = 0.32, size = 157, normalized size = 1.94 \[ -\frac {1}{2} \, {\left (c {\left (\log \left (c^{2} x^{2} - 1\right ) - \log \left (x^{2}\right )\right )} + \frac {2 \, \operatorname {artanh}\left (c x\right )}{x}\right )} b c^{2} d^{2} + \frac {1}{2} \, {\left ({\left (c \log \left (c x + 1\right ) - c \log \left (c x - 1\right ) - \frac {2}{x}\right )} c - \frac {2 \, \operatorname {artanh}\left (c x\right )}{x^{2}}\right )} b c d^{2} - \frac {1}{6} \, {\left ({\left (c^{2} \log \left (c^{2} x^{2} - 1\right ) - c^{2} \log \left (x^{2}\right ) + \frac {1}{x^{2}}\right )} c + \frac {2 \, \operatorname {artanh}\left (c x\right )}{x^{3}}\right )} b d^{2} - \frac {a c^{2} d^{2}}{x} - \frac {a c d^{2}}{x^{2}} - \frac {a d^{2}}{3 \, x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^2*(a+b*arctanh(c*x))/x^4,x, algorithm="maxima")

[Out]

-1/2*(c*(log(c^2*x^2 - 1) - log(x^2)) + 2*arctanh(c*x)/x)*b*c^2*d^2 + 1/2*((c*log(c*x + 1) - c*log(c*x - 1) -
2/x)*c - 2*arctanh(c*x)/x^2)*b*c*d^2 - 1/6*((c^2*log(c^2*x^2 - 1) - c^2*log(x^2) + 1/x^2)*c + 2*arctanh(c*x)/x
^3)*b*d^2 - a*c^2*d^2/x - a*c*d^2/x^2 - 1/3*a*d^2/x^3

________________________________________________________________________________________

mupad [B]  time = 0.90, size = 116, normalized size = 1.43 \[ \frac {d^2\,\left (6\,b\,c^3\,\mathrm {atanh}\left (c\,x\right )-4\,b\,c^3\,\ln \left (c^2\,x^2-1\right )+8\,b\,c^3\,\ln \relax (x)\right )}{6}-\frac {\frac {d^2\,\left (2\,a+2\,b\,\mathrm {atanh}\left (c\,x\right )\right )}{6}+\frac {d^2\,x\,\left (6\,a\,c+b\,c+6\,b\,c\,\mathrm {atanh}\left (c\,x\right )\right )}{6}+\frac {d^2\,x^2\,\left (6\,a\,c^2+6\,b\,c^2+6\,b\,c^2\,\mathrm {atanh}\left (c\,x\right )\right )}{6}}{x^3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*atanh(c*x))*(d + c*d*x)^2)/x^4,x)

[Out]

(d^2*(6*b*c^3*atanh(c*x) - 4*b*c^3*log(c^2*x^2 - 1) + 8*b*c^3*log(x)))/6 - ((d^2*(2*a + 2*b*atanh(c*x)))/6 + (
d^2*x*(6*a*c + b*c + 6*b*c*atanh(c*x)))/6 + (d^2*x^2*(6*a*c^2 + 6*b*c^2 + 6*b*c^2*atanh(c*x)))/6)/x^3

________________________________________________________________________________________

sympy [A]  time = 1.58, size = 158, normalized size = 1.95 \[ \begin {cases} - \frac {a c^{2} d^{2}}{x} - \frac {a c d^{2}}{x^{2}} - \frac {a d^{2}}{3 x^{3}} + \frac {4 b c^{3} d^{2} \log {\relax (x )}}{3} - \frac {4 b c^{3} d^{2} \log {\left (x - \frac {1}{c} \right )}}{3} - \frac {b c^{3} d^{2} \operatorname {atanh}{\left (c x \right )}}{3} - \frac {b c^{2} d^{2} \operatorname {atanh}{\left (c x \right )}}{x} - \frac {b c^{2} d^{2}}{x} - \frac {b c d^{2} \operatorname {atanh}{\left (c x \right )}}{x^{2}} - \frac {b c d^{2}}{6 x^{2}} - \frac {b d^{2} \operatorname {atanh}{\left (c x \right )}}{3 x^{3}} & \text {for}\: c \neq 0 \\- \frac {a d^{2}}{3 x^{3}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)**2*(a+b*atanh(c*x))/x**4,x)

[Out]

Piecewise((-a*c**2*d**2/x - a*c*d**2/x**2 - a*d**2/(3*x**3) + 4*b*c**3*d**2*log(x)/3 - 4*b*c**3*d**2*log(x - 1
/c)/3 - b*c**3*d**2*atanh(c*x)/3 - b*c**2*d**2*atanh(c*x)/x - b*c**2*d**2/x - b*c*d**2*atanh(c*x)/x**2 - b*c*d
**2/(6*x**2) - b*d**2*atanh(c*x)/(3*x**3), Ne(c, 0)), (-a*d**2/(3*x**3), True))

________________________________________________________________________________________